Permacomputing (by Ville-Matias "Viznut" Heikkilä)
И леле, колко много мога да си разсъждавам над идеите в нея. На такъв материал от толкова висок ранг не бях попадал от статията за соларпънка на Jay Springett насам.
Some choice bits:
At the same time, computers have been failing their utopian expectations. Instead of amplifying the users' intelligence, they rather amplify their stupidity. Instead of making it possible to scale down the resource requirements of the material world, they have instead become a major part of the problem. Instead of making the world more comprehensible, they rather add to its incomprehensibility. And they often even manage to become slower despite becoming faster.
What makes permacultural philosophy particularly appealing (to me) is that it does not advocate "going back in time" despite advocating a dramatic decrease in use of artificial energy. Instead, it trusts in human ingenunity in finding clever hacks for turning problems into solutions, competition into co-operation, waste into resources. Very much the same kind of creative thinking I appreciate in computer hacking.
2.2. Silicon
IC fabrication requires large amounts of energy, highly refined machinery and poisonous substances. Because of this sacrifice, the resulting microchips should be treasured like gems or rare exotic spices. Their active lifespans would be maximized, and they would never be reduced to their raw materials until they are thoroughly unusable.
Instead of planned obsolescence, there should be planned longevity.
Broken devices should be repaired. If the community needs a kind of device that does not exist, it should preferrably be built from existing components that have fallen out of use. Chips should be designed open and flexible, so that they can be reappropriated even for purposes they were never intended for.
Complex chips should have enough redundancy and bypass mechanisms to keep them working even after some of their internals wear out. (In a multicore CPU, for instance, many partially functioning cores could combine into one fully functioning one.)
3.2. Yin and yang hacking
Traditional computer hacking is often very "yang". A total understanding and control of the target system is valued. Changing a system's behavior is often an end in itself. There are predefined goals the system is pushed towards. Optimization tends to focus on a single measurable parameter. Finding a system's absolute limits is more important than finding its individual strengths or essence.
In contrast, "yin" hacking accepts the aspects that are beyond rational control and comprehension. Rationality gets supported by intuition. The relationship with the system is more bidirectional, emphasizing experimentation and observation. The "personality" that stems from system-specific peculiarities gets more attention than the measurable specs. It is also increasingly important to understand when to hack and when just to observe without hacking.
The difference between yin and yang hacking is similar to the difference between permaculture and industrial agriculture. In the latter, a piece of nature (the field) is forced (via a huge energy investment) into an oversimplified state that is as predictable and controllable as possible. Permaculture, on the other hand, emphasizes a co-operative (observing and interacting) relationship with the natural system.
The space of technological possibilities is not a road or even a tree: new inventions do not require "going forward" or "branching on the top" but can often be made from even quite "primitive" elements. The search space could be better thought about as a multidimensional rhizomatic maze: undiscovered areas can be expected to be found anywhere, not merely at the "frontier". The ability to speed fast "forward" on a "highway of technology" tends to make people blind to the diversity of the rhizome: the same boring ideas get reinvented with ever higher specs, and genuinely new ideas get downplayed.
6.2.1. Artificial intelligence
Artificial intellects should not be thought about as competing against humans in human-like terms. Their greatest value is that they are different from human minds and thus able to expand the intellectual diversity of the world. AIs may be able to come up with ideas, designs and solutions that are very difficult for human minds to conceive. They may also lessen the human burden in some intellectual tasks, especially the ones that are not particularly suitable for humans.
Since we are currently in the middle of a global environmental crisis that needs a rapid and complete redesign of the civilization, we should co-operate with AI technology as much as we can.
AI may also be important as artificial otherness. In order to avoid a kind of "anthropological singularity" where all meaning is created by human minds, we should learn to embrace any non-human otherness we can find. Wild nature is the traditional source of otherness, and a contact with extraterrestrial lifeforms would provide another. Interactions with artificial intelligence would help humans enrich their relationships with otherness in general.
7.4. Commons
Societies should support the development of software, hardware and other technology in the same way as they support scientific research and education. The results of the public efforts would be in the public domain, freely available and freely modifiable. Black boxes, lock-ins, excessive productization and many other abominations would be marginalized.
Ииии после... имаме това: Permacomputing - Update 2021 където вече разни теоретични (и не толкова) модели се разглеждат в дълбочина и си е цяло отделно четиво с множество препратки към различни публикувани трудове.
Bottom line: This is some capital-F Fascinating stuff.
UPDATE: Концепцията сега си има и wiki - Permacomputing Wiki